SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells.
نویسندگان
چکیده
Highly organized interphase cortical microtubule (MT) arrays are essential for anisotropic growth of plant cells, yet little is known about the molecular mechanisms that establish and maintain the order of these arrays. The Arabidopsis thaliana spiral1 (spr1) mutant shows right-handed helical growth in roots and etiolated hypocotyls. Characterization of the mutant phenotypes suggested that SPR1 may control anisotropic cell expansion through MT-dependent processes. SPR1 was identified by map-based cloning and found to encode a small protein with unknown function. Proteins homologous to SPR1 occur specifically and ubiquitously in plants. Genetic complementation with green fluorescent protein fusion proteins indicated that the SPR1 protein colocalizes with cortical MTs and that both MT localization and cell expansion control are conferred by the conserved N- and C-terminal regions. Strong SPR1 expression was found in tissues undergoing rapid cell elongation. Plants overexpressing SPR1 showed enhanced resistance to an MT drug and increased hypocotyl elongation. These observations suggest that SPR1 is a plant-specific MT-localized protein required for the maintenance of growth anisotropy in rapidly elongating cells.
منابع مشابه
Plant-specific microtubule-associated protein SPIRAL2 is required for anisotropic growth in Arabidopsis.
In diffusely growing plant cells, cortical microtubules play an important role in regulating the direction of cell expansion. Arabidopsis (Arabidopsis thaliana) spiral2 (spr2) mutant is defective in directional cell elongation and exhibits right-handed helical growth in longitudinally expanding organs such as root, hypocotyl, stem, petiole, and petal. The growth of spr2 roots is more sensitive ...
متن کاملRole of the SPIRAL1 gene family in anisotropic growth of Arabidopsis thaliana.
Arabidopsis spiral1 (spr1) mutants show a right-handed helical growth phenotype in roots and etiolated hypocotyls due to impaired directional growth of rapidly expanding cells. SPR1 encodes a small protein with as yet unknown biochemical functions, though its localization to cortical microtubules (MTs) suggests that SPR1 maintains directional cell expansion by regulating cortical MT functions. ...
متن کاملSalt stress affects cortical microtubule organization and helical growth in Arabidopsis.
Cortical microtubule arrays are critical in determining the growth axis of diffusely growing plant cells, and various environmental and physiological factors are known to affect the array organization. Microtubule organization is partly disrupted in the spiral1 mutant of Arabidopsis thaliana, which displays a right-handed helical growth phenotype in rapidly elongating epidermal cells. We show h...
متن کاملThe microtubule plus-end tracking proteins SPR1 and EB1b interact to maintain polar cell elongation and directional organ growth in Arabidopsis.
The microtubule plus-end tracking proteins (+TIPs) END BINDING1b (EB1b) and SPIRAL1 (SPR1) are required for normal cell expansion and organ growth. EB proteins are viewed as central regulators of +TIPs and cell polarity in animals; SPR1 homologs are specific to plants. To explore if EB1b and SPR1 fundamentally function together, we combined genetic, biochemical, and cell imaging approaches in A...
متن کاملSalt stress-induced disassembly of Arabidopsis cortical microtubule arrays involves 26S proteasome-dependent degradation of SPIRAL1.
The dynamic instability of cortical microtubules (MTs) (i.e., their ability to rapidly alternate between phases of growth and shrinkage) plays an essential role in plant growth and development. In addition, recent studies have revealed a pivotal role for dynamic instability in the response to salt stress conditions. The salt stress response includes a rapid depolymerization of MTs followed by t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 16 5 شماره
صفحات -
تاریخ انتشار 2004